
�?7BD<F@O, EFDG>FGDO
44AAOE <

CDB7D4@@<DB64A<5
&<?O 44==OE < ?5@5<5==O5 6 C++

�545?O 2 | �ADBD@4F<BAAO5 E<EF5@O, 2 >GDE

https://gamma.app/?utm_source=made-with-gamma

Lecture Objectives

1

Language Classification

Understand the classification of
programming languages.

2

C++ Data Types

Know the basic data types in C++.

3

Memory Storage

Understand how data is stored in
computer memory.

4

Data Type Selection

Be able to choose the appropriate data type for tasks.

5

Number and Text Representation

Understand the principles of representing numbers and
text in memory.

https://gamma.app/?utm_source=made-with-gamma

Programming Language Classification
A programming language is a formal language for writing computer programs, defining the rules of their appearance and the
computer's actions.

11GL: Machine Language

Binary code (0s and 1s), direct instructions to the
processor.

2 2GL: Assembly Language

Symbolic commands, mnemonics for operations.

33GL: High-Level Languages

Close to human language, architecture-independent
(C, C++, Java).

4 4GL: Domain-Specific Languages

Task-oriented (SQL, MATLAB).

55GL: AI Languages

Declarative languages (Prolog, Mercury).

https://gamma.app/?utm_source=made-with-gamma

Compilation vs. Interpretation

Compiled

Entire program translated

Fast execution

More complex to develop

Examples: C, C++, Rust

Interpreted

Line-by-line execution

Slower execution

Simpler to develop

Examples: Python, JavaScript

C++ is a compiled language, which ensures high performance.

https://gamma.app/?utm_source=made-with-gamma

Data and Its Representation
Data is information presented in a formalized form suitable for computer processing. Computer memory is a sequence of
numbered cells, each containing 1 byte of data.

Bit 1 Minimal unit (0 or 1)

Byte 8 bits Basic unit of memory

Kilobyte (KB) 1024 bytes ~half a page of text

Megabyte (MB) 1024 KB ~minute of MP3 music

Gigabyte (GB) 1024 MB ~HD quality movie

https://gamma.app/?utm_source=made-with-gamma

Computer Memory
Computer memory consists of a sequence of numbered cells, each with a unique address. Each cell stores 1 byte of data, allowing
it to hold a value from 0 to 255 (2^8 possible states).

Example Memory Cells

0x1000 42

0x1001 65

0x1002 0

0x1003 127

0x1004 255

Data Representation in Memory

Numbers

Numbers are stored in binary format (0s and 1s). For
example, the decimal number 42 is represented as
00101010 in one byte.

Text

Text is represented as a sequence of characters, each
encoded by a number (e.g., using ASCII or Unicode tables).

Images

Images consist of pixels, where each pixel has numerical
values for its color components (e.g., RGB).

Sound

Sound is recorded by sampling, where the amplitude of the
sound wave is measured at regular intervals and stored as
numerical values.

https://gamma.app/?utm_source=made-with-gamma

Data Types in C++
In C++, every piece of data has a specific type, which plays a crucial role in how that data is stored and processed.

Set of Values

Defines the range of values a
variable can hold (e.g., integers,
characters, floating-point numbers).

Memory Allocation

Specifies how much memory will be
allocated to store the data (e.g., 1
byte for char, 4 bytes for int).

Set of Operations

Dictates which operations are
applicable to the data (e.g.,
arithmetic operations for numbers,
concatenation for strings).

Classification of Data Types

Derived
Pointers, References,
Functions

Compound
Arrays, Structures, Unions,

Classes
Fundamental
int, char, long, float, double,
bool, void

https://gamma.app/?utm_source=made-with-gamma

Fundamental Data Types

Character char 1 byte -128 to 127

Character unsigned char 1 byte 0 to 255

Integer short 2 bytes -32,768 to 32,767

Integer int 4 bytes -2,147,483,648 to
2,147,483,647

Integer long long 8 bytes -9,223,372,036,854,775,80
8 to
9,223,372,036,854,775,807

Unsigned unsigned short 2 bytes 0 to 65,535

Unsigned unsigned int 4 bytes 0 to 4,294,967,295

Unsigned unsigned long long 8 bytes 0 to
18,446,744,073,709,551,615

Floating-point float 4 bytes ±3.4e-38 to ±3.4e+38

Floating-point double 8 bytes ±1.7e-308 to ±1.7e+308

Floating-point long double 10-16 bytes ±1.2e-4932 to ±1.2e+4932

Boolean bool 1 byte true/false

https://gamma.app/?utm_source=made-with-gamma

Overflow: Exceeding Type Limits
Overflow is a situation where the result of an arithmetic operation exceeds the range of values that a given data type can store.
This can lead to unexpected and incorrect results.

unsigned char x = 255; // Maximum for unsigned char
x = x + 1; // Overflow!
// x is now 0 (wraps around)

signed char y = 127; // Maximum for signed char
y = y + 1; // Overflow!
// y is now -128

Unsigned Types

When an unsigned integer reaches its maximum value (e.g.,
255 for unsigned char) and is incremented, it "wraps around"
to its minimum value (0). This behavior is called cyclic
transition or wrap-around and occurs due to the nature of
binary arithmetic.

Signed Types

For signed integers, when the maximum positive value is
reached (e.g., 127 for signed char) and incremented, it
transitions to the minimum negative value (-128). This is called
signed integer overflow and is related to the two's
complement representation of numbers.

https://gamma.app/?utm_source=made-with-gamma

Floating-Point Types
Floating-point numbers are represented according to the IEEE 754 standard. They have limited precision.

float 32 bits ~7 digits

double 64 bits ~15 digits

long double 80-128 bits ~19 digits

Recommendations: use float for memory saving, double for precise calculations. Avoid equality comparisons, use epsilon.

https://gamma.app/?utm_source=made-with-gamma

Character and Boolean Types

Char Type

Size: 1 byte

Stores character code (ASCII)

Examples: 'A' (65), '0' (48), '\n' (10)

Bool Type

Size: 1 byte

Values: true (1) or false (0)

Logical operations: && (AND), || (OR), ! (NOT)

The correct choice of type is important for program efficiency and memory optimization.

https://gamma.app/?utm_source=made-with-gamma

Memory Optimization
Efficient memory usage is a key aspect when working with large amounts of data in C++. Choosing the correct data type for a
variable can significantly reduce memory consumption and improve program performance.

// Suboptimal (16 bytes per record)
struct BadRecord {
 int day; // 4 bytes (char would suffice)
 int month; // 4 bytes (char would suffice)
 int year; // 4 bytes (short would suffice)
 int count; // 4 bytes
};

// Optimal (6 bytes per record)
struct GoodRecord {
 unsigned char day; // 1 byte (1-31)
 unsigned char month; // 1 byte (1-12)
 unsigned short year; // 2 bytes (0-65535)
 unsigned short count; // 2 bytes
};

Suboptimal Approach

Using int (4 bytes) for fields that can be represented by
smaller types, such as char (1 byte) or short (2 bytes), leads to
excessive memory consumption.

day, month: could use unsigned char.

year: could use unsigned short.

Optimal Approach

By choosing the minimally sufficient data types (e.g., unsigned
char for day/month and unsigned short for year), we reduce
the amount of memory for each record.

day (1-31): unsigned char (1 byte).

month (1-12): unsigned char (1 byte).

year (0-65535): unsigned short (2 bytes).

In this example, optimization reduces the size of each record by 10 bytes. When working with a million records, this leads to
significant savings of 10 MB, which is critical for high-performance systems.

https://gamma.app/?utm_source=made-with-gamma

Key Takeaways and Next Steps

1 Language Classification

By abstraction level and paradigm.

2 C++

Compiled, mid-level, OOP.

3 Data Types

Define size, range, and operations.

4 Integers

Negative numbers in two's complement.

5 Floating-Point Numbers

Limited precision.

6 Characters

Stored as numeric codes (ASCII).

7 Type Selection

Critical for efficiency.

Next Lecture: Control Structures (conditionals and loops).

https://gamma.app/?utm_source=made-with-gamma

